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It is demonstrated that in a one-dimensional Ising chain with nearest-neighbor interactions, irradiated by a
weak resonant transverse field, a stimulated wave of flipped spins can be triggered by a flip of a single spin.
This analytically solvable model illustrates mechanisms of quantum amplification and quantum measurement.
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I. INTRODUCTION

A simple logic scheme of quantum measurement �1� can
be represented as

U��in� = U�a�0�O + b�1�O� �0�D = a�0�O�0�D + b�1�O�1�D,

�a�2 + �b�2 = 1, �1�

where �0�O and �1�O are two states of a quantum object, �0�D
and �1�D are two macroscopically distinct states of a quantum
measuring device. In the initial state ��in�, the object is in
some arbitrary superposition state while the device is in its
ground state. The unitary transformation U is the controlled-
NOT �CNOT� gate between two qubits representing the object
and the measuring device. The CNOT gate flips the state of
the second qubit when the first qubit is in the state �1�O and
does not do anything when the first qubit is in the state �0�O.
More details can be added to this scheme if we suppose that
the macroscopic measuring device is a composite quantum
system consisting, as an example, of two-level systems 2 to
N with the two macroscopically distinct states: the ground
state �0�D= �0�2�0�3¯ �0�N−1�0�N and the state with all qubits
in their excited states �1�D= �1�2�1�3¯ �1�N−1�1�N. When qu-
bits are implemented by spins 1

2 , these two states are two
ferromagnetic states with all spins up or all spins down. In-
dex 1 will be used for the object: �0�O= �0�1, and �1�O= �1�1.
Then, the logic scheme of quantum measurement can be
written as

��out� = U��in� = U�a�0�1 + b�1�1��0�2�0�3 ¯ �0�N−1�0�N

= a�0�1�0�2 ¯ �0�N−1�0�N + b�1�1�1�2 ¯ �1�N−1�1�N.

�2�

There exist an infinite number of unitary operators which
convert the state ��in� into the state ��out�, depending on
what they do to the other states of the system. As an ex-
ample, in Ref. �3� a chain of CNOT operations between the
first and each of the other qubits has been proposed. Another
possible form is a chain of unitary CNOT gates �2�

U = CNOTN−1,NCNOTN−2,N−1 ¯ CNOT2,3CNOT1,2, �3�

where CNOTm,n negates the nth qubit conditioned on the mth
qubit. If the first qubit is in the state �1�1, it flips the second
qubit, then the second flips the third, and so on. This wave of
flipped qubits, triggered by the first qubit, propagates until it
covers the entire system. An advantage of the circuit in Eq.
�3� is that it requires only interactions between neighbor qu-

bits and, therefore, potentially can be implemented in large
systems.

In practical measuring devices, the dynamics of the com-
bined system �object + measuring device� is accompanied by
decoherence resulting from interaction with an environment.
In an idealized model, we can suppose that the reversible
unitary evolution and the decoherence are separated in time.
First, the unitary transformation of Eq. �3� takes place and
then the irreversible decoherence increases the entropy and
converts the pure state of Eq. �2� into the mixed state with
the density matrix

� = �a�2�01 ¯ 0N��01 ¯ 0N� + �b�2�11 ¯ 1N��11 ¯ 1N� .
�4�

This density matrix describes an ensemble of outcomes of
individual quantum measurements. With the probability �a�2
we find the measuring device in its ground state and the
wave function of the object collapsed to the corresponding
state. With the probability �b�2 we find another “reading” of
the measuring device and the object in its excited state. In
fact, in real situations when the measuring device is a com-
paratively small quantum system, the two processes, unitary
evolution and decoherence, can be well separated in time �2�.

The most important feature of the process leading to the
state of Eq. �2� is the signal amplification: polarization of a
single two-level system is converted into a macroscopic total
polarization of the measuring device. In classical physics,
amplification is based on nonlinear behavior. On the other
hand, quantum mechanics is linear and the mechanisms of
amplification are different �2–6�. Amplified quantum detec-
tion �4� or measurement �2,3� requires a collective dynamics,
which propagates entanglements and correlations through the
entire system. In the absence of long-range interactions, the
polarization wave, represented by the unitary transform of
Eq. �3�, is the fastest and the most efficient way of creating
entanglements. As an example, if the initial state of the ob-
ject is the superposition 2−1/2��0�O+ �1�O�, the chain of gates
in Eq. �3� creates the maximally entangled superposition
�Schrödinger cat� state of the entire system.

Implementation of each of the CNOT gates in Eq. �3� re-
quires coherent control and addressing of individual qubits.
On the other hand, there exists a Hamiltonian H= �i /��ln U
which gives the unitary evolution of Eq. �3� after the evolu-
tion time �, although the structure of this Hamiltonian might
be very complex. In this work, we propose an analytically
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solvable model with a simple Hamiltonian, which exhibits
quantum dynamics similar to the ideal scheme of Eq. �3� and
therefore realizes a mechanism of quantum amplification.

II. MODEL

Let us consider a one-dimensional Ising chain with
nearest-neighbor interactions, irradiated at resonance by a
weak transverse monochromatic field. The Hamiltonian of
the system is

H =
�0

2 �
i=1

N

�i
z + �1�

i=1

N

�i
xcos �0t +

J

4 �
i=1

N−1

�i
z�i+1

z , �5�

where �0 is the energy difference �q=1� between the excited
and ground states of an isolated spin �qubit�, J is the inter-
action constant, �1�J��0 is the amplitude of irradiation,
�z and �x are the Pauli operators. The principle of the opera-
tion of this model is illustrated in Fig. 1. When a spin is at
the either end of the chain or when it has two neighbors in
the same state, interaction with the neighbor�s� makes the
spin off-resonant and the irradiation field does not change its
state. When the two neighbors are in different states, the
resonant irradiation field flips the spin. Therefore if all spins
are in the same state, the state of the entire system is station-
ary. If the first spin is flipped, its neighbor becomes resonant
and flips, then the next spin flips, and so on. Quantum-
mechanical solution for this dynamics is given in the next
sections.

III. SECULAR HAMILTONIAN

In the rotating frame at �1�J��0, one can neglect the
nonresonant counter-rotating component of the transverse
field. Then, the Hamiltonian in the rotating frame becomes

Hrot = Hx + Hzz =
�1

2 �
i=1

N

�i
x +

J

4 �
i=1

N−1

�i
z�i+1

z . �6�

It is the Hamiltonian of an Ising chain in a transverse field
�7�. At �1�J, we can restrict ourselves by considering only
the secular part of the Hamiltonian of Eq. �6�, which is the
time-independent part of the Hamiltonian in the interaction

representation: H̃�t�=exp�−iHzzt�Hxexp�iHzzt�. By noticing
that the terms in Hzz commute with each other and that

exp	− i
J

4
�i

z�i+1
z t
 = I cos	 Jt

4

 − i�i

z�i+1
z sin	 Jt

4

 ,

where I is the identity operator, one obtains

H̃�t� = exp�− iHzzt�Hxexp�iHzzt� = exp�− i�Jt/4��
i=1

N−1

�i
z�i+1

z ��1

2 �
i=1

N

�i
xexp�i�Jt/4��

i=1

N−1

�i
z�i+1

z �
=

�1

2 �
i=2

N−1

exp�− i�Jt/4��i−1
z �i

z�exp�− i�Jt/4��i
z�i+1

z ��i
xexp�i�Jt/4��i

z�i+1
z �exp�i�Jt/4��i−1

z �i
z�

+
�1

2
exp�− i�Jt/4��1

z�2
z��1

xexp�i�Jt/4��1
z�2

z� +
�1

2
exp�− i�Jt/4��N−1

z �N
z ��N

x exp�i�Jt/4��N−1
z �N

z �

=
�1

4 �
i=2

N−1

���i
x − �i−1

z �i
x�i+1

z � + ��i
x + �i−1

z �i
x�i+1

z �cos Jt + ��i−1
z �i

y + �i
y�i+1

z �sin Jt�

+
�1

2
��1

xcos
Jt

2
+ �1

y�2
zsin

Jt

2
+ �N

x cos
Jt

2
+ �N−1

z �N
y sin

Jt

2
� . �7�

FIG. 1. 1D Ising chain under resonant irradiation. Irradiation
flips only the spins that have two neighbors in different states.
When the first spin is flipped, a wave of flipped spins is generated.
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The time-independent part of this expression is the secular
Hamiltonian

H̃secular =
�1

4 �
i=2

N−1

�i
x�1 − �i−1

z �i+1
z � . �8�

This Hamiltonian has exactly the same form as the model
Hamiltonian used to describe a motion of domain walls in a
one-dimensional �1D� Ising magnet �8�. The terms of the
three-spin effective Hamiltonian of Eq. �8� have a straight-
forward interpretation: the spin-flipping operator �i

x for the
spin i is “turned off” when its two neighbors are in the same
state and �1− ��i−1

z �i+1
z �� is zero.

IV. EIGENSPACE

There are several successful examples, when simplifica-
tion of spin �9� or spatial �10� parts of a Hamiltonian has led
to analytically solvable models with nontrivial spin dynam-
ics. Some dynamical problems in one-dimensional chains
can be solved exactly �11�. For the model we consider in this
work, simplification arises from a special type of initial con-
ditions.

We are interested in the dynamics, which starts with one
of the two initial states: when all the qubits are in the ground
state and when the first qubit is flipped. In this case, evolu-
tion is confined within a small subspace of the entire Hilbert
space. Dimensionality of this subspace is N+1, compared to
2N of the entire space.

Let ��k� be the state with the first k spins of the chain
flipped �i.e., in the state down�. By repeatedly acting with the
secular Hamiltonian of Eq. �8� on ��k�, one can see that there
exist three subspaces spanned by ��k�’s,

H̃secular��k� =

0 if k = 0,N

�1

2
��2� if k = 1

�1

2
���k−1� + ��k+1�� if 2 � k � N − 2

�1

2
��N−2� if k = N − 1

� .

�9�

The dynamics is very different for the two slightly different
initial states ��0� and ��1�. The state ��0� does not change
since it is an eigenstate of the secular Hamiltonian, while the
state ��1� can be converted into the states with multiple
flipped qubits �up to N−1�. There are no nonzero matrix
elements of the Hamiltonian of Eq. �8� between ��k�’s and
any other vectors of the multiplicative basis. From Eq. �9�,
one concludes that the secular Hamiltonian of Eq. �8�, in the
subspace spanned by ��k�’s with k=1,… ,N−1, has nonzero
elements only on the first super- and subdiagonals.

V. SOLUTION AND RESULTS

Let MN be an N	N tridiagonal matrix with �MN�i,i

=a , �MN�i,i+1= �MN�i+1,i=b, where a and b are real numbers

�12�. The eigenvalues can be obtained by solving the equa-
tion det�MN−
IN�=0, where 
 and IN are the eigenvalue and
the N	N identity matrix, respectively. It is easy to check
that the calculation of the determinant produces a recursion
relation

det�MN − 
IN� = �a − 
�det�MN−1 − 
IN−1� − b2det�MN−2

− 
IN−2� ,

which can be solved to give

det�MN − 
IN� = �− 1�N�−
N1 − ��+/�−�N+1

1 − ��/��
,

where �±= 1
2 �
−a±��
−a�2−4b2�. The nontrivial solution

satisfying det�MN−
IN�=0 can be found from ��+ /�−�N+1

=1, which gives the eigenvalues 
p=a−2b cos�p� / �N+1��
with p=1, . . . ,N. Let 
� p= �
p1 , . . . ,
pN� be the eigenvector
corresponding to 
p. From MN
� p=
p
� p ,
p,k+1+
p,k−1
=−2
p,kcos�p� / �N+1�� , 
p,2=−2
p,1cos�p��N+1��, and

p,N−1=−2
p,Ncos�p� / �N+1��. The solution of these equa-
tions gives


p,k = �− 1�k−1sin�pk�/�N + 1��
sin�p�/�N + 1��

.

From the normalization condition �k=1
N �
p,k�2=1 and

�k=1
N sin2�pk� / �N+1��= 1

2 �N+1�, we obtain 
p,k

= �−1�k−1�2/ �N+1�sin�pk� / �N+1��, where p=1,… ,N, and
k=1,… ,N−1.

From the above results, the secular Hamiltonian of Eq.
�8�, in the subspace spanned by ��k�’s, has the eigenvalues


p = − �1cos
p�

N
�10�

and corresponding eigenvectors

��p� =� 2

N
�
k=1

N−1

�− 1�k−1sin
pk�

N
��k� , �11�

where p=1,… ,N−1.
While ��0� is stationary under the secular Hamiltonian of

Eq. �8�, ��1� initiates a very interesting “quantum domino”
dynamics which results in macroscopic changes. For the op-
erator of the total polarization P=�k=1

N �k
z , ��l�P��k�

= �N−2k��kl. The time dependence of its average value is
given by

�P�t�� = tr�Pe−iH̃seculart��1���1�eiH̃seculart�

= �
k,l,p,q,r,s=1

N−1

��k��p���p�e−iH̃seculart��q���q��1�

	��1��r���r�eiH̃seculart��s� 	 ��s��l���l�P��l� .

�12�

Using Eqs. �10� and �11�, Eq. �12� can be written explicitly
as
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�P�t�� =
4

N2 �
k=1

N−1

�
p,r=1

N−1

�N

− 2k�sin
pk�

N
sin

p�

N
sin

rk�

N
sin

r�

N
cos�	cos

p�

N

− cos
r�

N

�1t� . �13�

We can also calculate polarizations of individual spins

pm = ��l��m
z ��k� = � �kl if k � m

− �kl if k � m
� .

The time dependence of its average value is given by

pm�t� = tr��m
z exp�− iH̃seculart���1���1�exp�iH̃seculart��

=
4

N2	 �
k�m

− �
k�m


 �
p,r=1

N−1

sin
pk�

N
sin

p�

N
sin

rk�

N
sin

r�

N

	cos�	cos
p�

N
− cos

r�

N

�1t� . �14�

The “snapshots” of polarizations pm= ��m
z �t�� at �1t=0,

25, 50, 75, 100, and 105.7 for N=100 are displayed in Fig. 2.
One can clearly see the wave of flipped qubits, propagating
from the left end of the chain. The width of the transition
region, or the “domain wall,” also increases with time.

Amazingly, this dynamics gives practically linear time de-
pendence of the total polarization, until the wave reaches
the opposite end of the chain, where the wave reflects and
moves back. The changes in the total polarization ��P�t��
= �P�t��− �P�0�� are plotted in Fig. 3 for N=25, 50, 75, and
100 as functions of the dimensionless time �1t.

In order to independently check the results summarized
by Eqs. �13� and �14�, we performed computer simulations
with the secular Hamiltonian �Eq. �8��. The simulation was
done in the entire Hilbert space for an eight-spin chain and in
the subspace of the wave functions ��k�’s for a 100-spin
chain. The simulated dynamics of polarizations coincided
precisely with those given by the analytical expressions of
Eqs. �13� and �14�. Simulations with the full Hamiltonian of
Eq. �6� for short chains showed dynamics very close to our
analytical solution and verified that the effective Hamiltonian
of Eq. �8� is a good approximation at small values of �1 /J.
Figure 4 presents the results of simulations with the Hamil-
tonian of Eq. �6� �N=8� at �1 /J=0.1 and 0.2. At smaller
ratios �1 /J the results practically coincide with Eq. �13�.

FIG. 2. Snapshots of individual sites’ polarizations for N=100
when �1t is equal to �a� 0, �b� 25, �c� 50, �d� 75, �e� 100, and �f�
105.7 where the change of the total polarization is maximum.

FIG. 3. Changes of the total polarization �P�t� for N=25 �dash-
dot line�, 50 �dotted line�, 75 �dashed line�, and 100 �solid line�. The
first turning points are reached at �1t�1.06N, where the coefficient
of amplification 
= ��P� /2 is at its maximum of 0.87N.

FIG. 4. Changes of the total polarization �P�t� at N=8 for the
two initial states �all spins up and the first spin down�. The solid
lines are our analytical solution, the dashed and the dotted lines are
simulations with the full Hamiltonian of Eq. �6� at �1 /J=0.1 and
0.2, respectively.
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VI. DISCUSSION

For large N, the maximum change of polarization is
reached at �1t� 1.06 N. At this time, the absolute value of
the total polarization is about 87% of its maximum value. By
comparing the change of the polarization produced by the
flip of a single qubit and the maximum change of the total
polarization, resulting from the dynamics triggered by a flip
of one qubit, one can introduce a coefficient of amplification

= ��P� /2. For N�1, in our ideal model the coefficient of
amplification 
� 0.87 N can be arbitrarily large for long
chains. Our simulations showed that decoherence limits the
maximum coefficient of amplification. These results will be
presented elsewhere. Another related characteristic is the
contrast C=�P / P�0�, introduced in Ref. �3�, which is a rela-
tive change of polarization �magnetization� of the entire spin
system. Its maximum possible value is C=2. In our model,
for N�1, C�1.73.

Propagation of a stimulated polarization wave, studied in
this work, is a reversible quantum dynamics. The evolution
can be reversed at any time by changing the sign of the

effective Hamiltonian of Eq. �8�. Since the effective Hamil-
tonian is linear in �1, the change of its sign can be easily
accomplished by a 180° shift of the phase of the resonant
irradiation.

A similar quantum dynamics of amplification can be used
for designing efficient detectors or quantum measuring de-
vices. However, we do not expect that analytical solutions
will be available for systems with more realistic Hamilto-
nians, and computer simulations will probably be restricted
to comparatively small composite quantum systems. In addi-
tion, relaxation, decoherence, and distribution of the initial
states would affect operation of real devices. The role of
these factors in the amplification dynamics has not been
studied yet.
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